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Motion About the Stable Libration Points in the
Linearized, Restricted Three-Body Problem

Don Mittleman*

1.0 SUMMARY

Starting from the well-known differential equa-
tions of motion for a point particle in the neighbor-
hood of a triangle libration point (L4 or Ls) in the
linearized, restricted problem of three bodies in the
plane, and after obtaining the finite equations of mo-
tion, three integral invariants of the motion are
derived. The Jacobi integral is expressed linearly in
terms of two of these. The trajectories for varied ini-
tial conditions are drawn; the motion of a point parti-
cle, as it moves along its trajectory, can be visualized
in elementary geometric terms. Each trajectory has
an exterior bounding curve; its equation is found. An
approximation to this boundary curve, a well-defined
ellipse, had been known; the two curves are com-
pared graphically. For certain initial conditions,
there is an interior region from which the trajectory
is excluded; the equation of the boundary of this
region is found.

2.0 INTRODUCTION

The motion of a particle in the neighborhood of a
triangular libration point in the linearized, restricted
problem of three bodies in the plane is investigated.
In section 3, the linearized equations of motion are
given,; in section 4, three invariants of the motion are
determined; and, in section 5, the trajectories for
several initial conditions are discussed. All trajecto-
ries are bounded; thus, in section 6, the equations for
the exterior bounding curve are derived and, where
appropriate, the equations for the interior boundary
curves are given.

3.0 THE EQUATIONS OF MOTION

In section 3.1, the differential equations of motion
for a particle are derived. The Jacobi integral and the

*Oberlin College, Oberlin, Ohio.

Jacobi ellipse are obtained. Generic solutions of the
differential equations are given in section 3.2 and
their dependency on initial conditions is shown in
section 3.3. Various combinations of the constants of
the system are interrelated; these relationships are
given in section 3.4.

3.1 The Differential Equations

The following discussion parallels closely that
given in reference 1. Two bodies of finite mass,
shown as the Earth (£) and the Moon (M) in the
following sketch, are assumed to rotate about an axis
gy through their center of mass in circular orbits
lying in a plane = that is orthogonal to { 1- A rotating
rectangular coordinate system (£,,7) lies in ; the
Earth and Moon have the fixed coordinates (x1,0,0)
and (x,,0,0), respectively, and their center of mass is
at (0,0,0). The distance between Eand Mis chosen to
be equal to 1; the mass of M is taken as u < 0.5, that
of Eas 1 — u. The choice for the unit of time is such
that the gravitational constant k2 = 1.1

E

(xl,o’o)\Mass=l—u (x5,0,0) &

'For the Earth-Moon system, time ¢*is calculated from this
dimensionless time ¢ usingthe equation ¢* = (T,/2m)¢, where
T is the time for one revolution of the system about the center of
mass. For T, = 27.322 days, 1* = 4.348:.



In the three-dimensional (£,,m;,{;) coordinate
system, the differential equations of motion for a
point particle are

d’, dng A - —x)  wE - x)
gty _
P dr i i
d’n,  df, (- wny  pny

> Y T 3 3
dt " ry

%, (1 - wk,  u

2 3
dt n ry

where 712 = (§1 - x1)2+ 7)12+§12 and r22 = (gl -
x,)%+ m2+ £, 2. 1f the potential function

U(El"’?l,fl) = %(512 + 7712) ) rI B 4 -r“:

is introduced, the equations of motion become

d%, any U

42 Cdr 9%

2
d'ny 4§, U

d['2 dt 8171
2
T _au
dr? 9%y

If a (£5,m,,0,) coordinate system is defined with
the origin at L, a triangular libration point, and with
the axes parallel to the (§,,m,,,) axes, the linearized

equations of motion are

—2= 330 - o, v, (b)

d%,
_d[—z = _§-2 (IC)

Equation (Ic), being independent of equations (1a)
and (1b), shows that the motion parallel to the ¢,
axis is periodic with period 27. No more will be said
about this; the remaining discussion concentrates on
the solutions of the first two equations.

If equation (la) is multiplied by d¢,/dt and equa-
tion (1b) by dn,/dtand the results added, the follow-
ing is obtained.

dg, d%, dn, d’n, .

dt drt dt dr?

dt dk dn dn
3 2, 33 2 2 9 2
2t F Ty U 2“(’727 * 527;) a"ar

This equation can be integrated and yields the Jacobi
integral

1|f45)*
2\ dt

a\’l  3%5° 33 :
* (7.:7) =a 2 Ty (- wEm,

9%’ ¢
AP @



where Cis a constant to be determined from the ini-
tial conditions. In particular, three different values
for C are distinguished: —1, 0, and +1. Since equa-
tions (1a) and (1b) are linear in £, and 7, and equa-
tion (2) is a homogeneous function of £, m,, dé,/dt,
and dn,/dt, any other value of C can be reduced to
one of these three by properly scaling the (§,,m;)
variables.

3.1.1 Rest trajectories—Those trajectories for
which the initial velocity is zero will be called “rest
trajectories.” For these, C = —1 and the initial posi-
tions lie on the conic

3

33 9
sE t —4—‘/_(1 - 2, gy =

L
2

If 0 < 1 < 1, the discriminant of the quadratic is
|33 2 27
D —[-4—(1 - 2;0] —~ 4(64>< 0

and the conic is an ellipse which shall be called the
Jacobi ellipse. _

3.1.2 Simplified form of the equations of motion.—
To simplify subsequent discussions, an (x,y) coordi-
nate system is introduced. The origin is taken at L,
which is also the center of the Jacobi ellipse; the x
axis coincides in direction with the major axis of the
ellipse and the y axis with the minor axis. This is
effectively a rotation of axes with respect to the
(£,,m,) axes through an angle 8, where 6 = 0.5 arctan
[—+/3 (1 — 2u)] radians.

In the (x,y) coordinate system, the linearized
equations of motion (equations (la) and (1b))
become

X - 2= w (3a)

¥+ 2= wyly (3b)

where

€
-
1l
YY)

(N
(TR

Wy

1t
o w

and the dots indicate differentiation with respect to
time.
In this coordinate system, the Jacobi integral is

P2+ 2= w12x2 + w22y2 +C 30)

and the Jacobi ellipse is

w 2x? + w2y =1 (3d)

3.2 Solutions of the Differential Equations

The solutions to equations (3a) and (3b) are of the
form

=
1

= K1 cosS At + K2 sin Az

<
|

=L cos &t + L, sin At

Nonzero solutions can be obtained if A satisfies the
characteristic equation:

M2+ - w = o

1++1 = 27u(l — p)

z2 = >

N2 o1V - 2%~ w
2 2

A = N

Ny = Ay



Only the stable solutions are considered; i.e.,
those for which the A are real and not equal to zero.
Acceptable values of p are those for which 1 —
27u(1 — ) > 0 or u < 0.0385207.... For the
Earth-Moon system, u = 1/82.45 = 0.0121285...
and the linear theory may be used to describe the
motion of a satellite near the libration point.

The solutions to equations (3a) and (3b) are
among the functions

x = K1 cos 7\1t + K2 sin )\lt + 1\’3 cos )\Zt + K4 sin >\2t

y =L cos )xlt + L, sin )\lt + L3 cos?\zt + L, sin 7\2t

where K|,..., L, are arbitrary constants. If these
trial solutions are to satisfy equations (3a) and (3b),
the coefficients Kj, . .., L, are related. The solutions
to equations (3a) and (3b) can be represented by

X = (Kl cos At + K, sin )\lt)

+ <K3 cos Ayt + K, sin 7\21‘) (4a)

y =M (K2 cos At — K, sin 7\11‘)

+ M, (K4 cos )\21‘ — K3 sin 7\2t> (4b)

where
2 2
| A
1 2\
and
2 2
i w + }\2
2 2,

3.3 Initial Conditions

The dependency of K, K, K3, and K, on the ini-
tial conditions follows. If, at time r = 0, x = x,, y =
Yo X = Xg,and y = y,, then

2 2
w,“+ AN)x + 2
1<=<1 22>°2 2 (5a)
Mo N

2 2 2\

N2y, - ("*’1 + A, )x

K= 2 2 (50)
“ NN

Q

2 2 ’
w,“+ AN%)x + 2y
K3=-(1 ) * % (5¢)

2 2
7\2 _>\1

2 2\, 2
)\2 (‘*’1 + )\1 )xo — 2)\1 Y,
4 2

2 5 2
@y A, A

~
n

(5d)

The determination of K; (i = 1, 2, 3, 4) is obtained
from equations (4a) and (4b) in a straightforward, if
tedious, calculation.

3.4 Some Useful Relationships

By direct computation, it can be shown that
2 2 _
Wt Wy = 3
2 2 -
NEE A=

W w, = 7\1)\2

2 2
U NN
1 2N C022 + )\12
2 2
- Wt A ) PAV
2 2\, “)22 + 7\22



and Since A; (/ = 1, 2) is a root of the characteristic
equation (6), which can be written in the form

M 1
M =g, w2+ 22 2

a0 w2+l

N

Alternately, if one starts with the equation
the alternate forms for M; and M, become apparent.
Finally, from

Xx— 2= wlzx (3a)
0,
. - _ 2 M, =
and seeks a solution of the form 2(‘%“’2)
S \M )
- - - 2 + x 2
x = Kjcos N + K, sin Mt ) 1
y =Ljcosht + L,sinN\ _ 201w,
= . >
2 1
| )\2w2 1+ ,
the characteristic equation for A is
) 2wl
4 2 2 2 2,2 _ 2
Mot (w2 + w0, a2+ 202200 (6) xw[1+<—w—l>]
29, \
2
From this, it is inferred that _ 2010,
- 2 2
“’2(7‘2 t Wy )
2 2_ (.2 2
A2+, (‘*’1 +.w, 4) o f 2,
w\w, 2 + A2
or
_%1 1
B M
2 2 2 2 _ Wy My
NN ot e, =4
Wy
Mle = —
W,

and, since w2 + 0,2 = 3, \;2 4+ \,2 = 1. From
M20? = o 2wy?, itis inferred that A\, = w, w,, dis-
regarding the negative value for the square root.



4.0 INVARIANTS OF THE MOTION

In section 4.1, two invariants of the motion, J; and
J,,are derived. A third invariant relationship is given
in section 4.2, where it is also shown that these three
invariants can be used to distinguish between
different trajectories or to identify a “second” trajec-
tory as a continuation of an earlier identified one. A
linear relation exists between J;2,J,2 and the Jacobi
constant; this is derived in section 4.3.

4.1 The J; and J, Invariants

Suppose a particle P is observed at ¢t = ¢, at posi-
tion (x,,y,) with velocity (x,,5,). Its trajectory can be
determined. At some later time £, the particle P will
be at the point [x(#,)y(f)] = (x1,y) with velocity
[x(1)) y()] = (X,5,). However, between ¢ = g and
t = #, you lose track of the particle. Is it possible to
decide if the particle Pobserved at time ¢ = fyand the
particle observed at ¢ = f; are the same? The follow-
ing discussion partly answers this question.

Having observed the particle initially at (x,,y,)
with “initial” velocity (x,,), a unique trajectory
and, in particular, the numbers K, K, K3, and K,
are determined. At the later time 7, a particle is ob-
served at the point (x;,y;) with velocity (x;,9;). For
these “initial” conditions, a unique trajectory and, in
particular, four numbers Ky, K, K3, and K are
determined. The question may then be framed: Is
this second trajectory merely a continuation of the
first or is a different particle being observed? -

Using ¢ to represent time for the “first” particle
(so that at 4, t = 0), its equations of motion are

x(#) = Ky cos At + K, sin At

+ Ky coshyt + K, sin\,¢ (Ta)

»@) = M, (K2 cosA it — K sin )\lt)

+ My(Ky cosyt — Kysinhyt)  (Tb)

Using 7 to represent time for the “second” particle
so that at f;, 7 = 0), its equations of motion are
(so thatat 4 0), it t f mot

x(r) = K’f cos A7 + K; sin \y7

+ K3 cos \yT + K}y sin A7 (8a)

¥() = M, (K; cos A\ T — K;‘ sin 7\17)

+ M, (K:','= coS AT — K; sin )\21') (8b)

The relation between tand ris t = 7 +1.
Equations (7a) and (7b) for the original trajectory
[x(2),y(?)] when viewed in the time frame 7 become

x'(T N '1) = K, cos )\l<f + tl) + K, sin )\l(r + tl)

+ Ky cos)\z(f + tl) + K, sin7\2 T+ {,)

(9a)

y(T + tl) = Ml':[(2 cos)\l(r + ’1) — Ky sin A](T + tl)]
+ M, [I\’4 cos)\2 T+ tl) — Kjsin )\2 T+ ’1)]
~(9b)

Using the addition formulas for sin A(7 +£) and cos
A (7 +1)) in equations (9a) and (9b) and equating the
coefficients of cos A;7, sin A7, cos A,7, and sin A,7
to the corresponding quantities in equations (8a) and
(8b) 2t is found that

K’; = K cosht; + K, sinA#; (10a)
K; = K,cos\jt; — K;sin\jt (10b)
K;‘ = K5 cos ?\21‘1“ + K, sin A2 (10c)
KI = K, cos 7\21“1 — Kysin ?\Ztl (10d)

2A sufficient condition to permit the equating of the corre-
sponding coefficients is that A; and A, be incommensurate. This is
assumed here and throughout the remainder of this paper.



However, equation (10) implies that

K2 + K3% = K2 + K2 (11a)
and
K32+ K32 = K32 + K2 (11b)

Therefore, K2+ K,2 and K32 + K,? are invariants of
the trajectory. The notations J;2 = K;2+ K,2 and J,2
= K32+ K42 shall be used.

4.2 The Third Invariant
It has been shown that the quantities J, and J, are
invariants of the trajectory. The question of addi-

tional invariants is pursued.
From equations (10a) to (10d), it is found that

* *
KKy + KK,

Ccos N\ 2, =
1°1 2
‘Il
K,K, — K{K,
sin 7\111 =
J 2
1
K;K3 + K,K
cos Ayt; = 5
J2
K K3 — K4K}

(Note that, on the right sides of these equations, only
K7, K3, K, and K depend on ¢; the other symbols
do not.)

Four angles ¢,, ¢f, ¢,, and ¢; are defined by the

following relations:

! K,
cos ¢, =T sin ¢, =?
cos:pf:% sinq&’f:ljig
cos ¢, =-I;—j- sin ¢, =I;_‘21
e L

2 2

(Remember that Ji' = J; and J; = J,. Also, only ¢,
and ¢2 are functions of #.) Using this notation,

cos ()\ltl) = cos ¢1 cos ¢T + sin ¢>1 sin ¢’f
_ *
= cos (d)l — ¢1)

sin ()\ltl) = sin ¢1 cos ¢T — cos ¢>1 sin ¢’1"

- o *
= sin (¢>1 — ¢1)
Therefore, there exists an integer » such that
Mty =6, = 67+ m (12a)
It is claimed that n is zero. Consider

2t = Nty — ¢ + 67 (12b)

The symbol ¢>1, which depends on the “initial” con-
ditions at f,, is mdependent of # and for our purpose
is constant. The symbol ¢1 depends on the “initial”



conditions at #; ¢ is a continuous function of .
Furthermore, if 4 = 0, ¢; = ¢,. Therefore, the right
side of equation (12b) is zero for i = 0. Thus,
n = 0 when # = 0. But n is an integer and the right
side of equation (12b) is a continuous function of 4.
This implies that n = 0 and equation (12a) becomes

ANt =9 — 67 (12¢)
A similar argument shows that
Nty = 6y — & (12d)
Eliminating ¢,
Mdy — N9y = Aoy - A 95 a3

The symbol used shali be J3 = XA yd; — A 5.

Equations (11) and (13) show that if the same tra-
jectory is observed at two different times, the quan-
tities J;, J,, and J; are invariants. Conversely, if two
trajectories are given for which the Jj, J,, and J; of
the first are equal, respectively, to the J;, J5, and J;of
the second, then the two trajectories are not distinct;
one is a continuation at some later time of the other.
Furthermore, this later time can be determined from
either equation (12c) or equation (12d).

4.3 On the Relation Between J;, J,, and C, the
Jacobi Constant

The Jacobi integral, equation (3c), is valid for all
values of the time 7 and in particular for r = 0. The
following relationships between x,, y,, x,, and y,and
K, K;, K3, and K can be found from equations (4a)
and (4b) and their derivatives with respect to time.

x, = K; + K, (142)

X, = NK, * MK, (14b)

o

Yo = MK, + MK, (14¢)

Vo = NMK; — MMK, (144d)

When these values are substituted into equation (3c),
that equation becomes

(?\12 — w, M D)k, + (>\12Ml2 - w2k,

+ (02 = w0, 2)K,2 + (0,12 - 0, )k,

-+

2(\Ay — @, MM)K K,

<+

2(7\1)\2M1M2 — wlz)K1K3

= -C (15)

However, since M{M, = o /w,; and M)Ay = w0,,
the coefficients of K, K, and K K} are zero.

The coefficients of K,? and X,2 are shown to be
equal by the following. From section 3.4,

2 2
M = w “t 7\1 _ 27\1
17 2A T2 2
1 w,“ 7\1
so that
2 2
w;“ + A
2 _ 1 1
My~ = 2
wy," T A

2as 2 22,2 _ 2 2
Wy™M T A M T = w0t

2002 22 22
A My w3 A w, "M,

A similar calculation shows that the coefficients of



K32 and K42 are equal. Thus, equation (15) can be
written as

(w12 = N D02 + (w01, — 2,)0,% = ¢

(16)

5.0 ILLUSTRATED TRAJECTORIES

Trajectories associated with different initial condi-
tions are explored, in a systematic way, in this sec-
tion. At a first level of classification, trajectories were
differentiated on the basis of the value of the Jacobi
constant C. In sections 5.1, 5.2, and 5.3, trajectories
for which C= —1, C= +1,and C= 0, respectively,
are examined.

5.1 Trajectories for Which C = —1
Included among the trajectories for which C =

—1 are the rest trajectories, those for which the start-
ing position is on the Jacobi ellipse.

2.2 2,2 _
WX, Tt Wy =1

These constitute a one-parameter family of solutions
that can be parameterized by x, = (1/w,) cos y and
Yo = (l/wy) sin vy, where vy is the parameter. The
values of K; are

(w12 + )\22) cos Yy
w (2 - 2,2)

2)\2 sin y
’ “’1(7\22 - )‘12)
(wlz + )\12) cos ¥
Ky = - 2 2
w1(7\2 - N )

2\ siny

4 —w1(7\22 — )\12)

K, =

Typical trajectories are drawn for y = 0° 15°,
30°,..., 345° in figure 1. The value of u = 1/82.45
was chosen, from which Ay, \,, 0y, w,, M|, and M,
were calculated.

For the specific initial conditions, K, Kj, K3, K4,
and J;, J, were also calculated. Each graph is scaled
so that each mark represents 5 units. The innermost
curve (in black) is the Jacobi ellipse; its semi-major
axis equals 1/w; and its semi-minor axis equals 1/w,.
The trajectory is drawn in red for 0 < ¢ << 50.3 The
blue curve will be discussed in section 6.

5.2 Trajectories for Which C = +1

Among the trajectories for which C = +1 are
those which start, with velocity different from zero,
at the libration point x = 0, y = 0. Under these con-
ditions, the Jacobi integral becomes

These trajectories constitute a one-parameter family
of solutions that can be parameterized by x, = cos y
and y, = sin y, where v is the parameter. The values
of K; are

_ 2siny
i (A2 -22)

7\1 (w12 + )\22)cos 0%

2 -~ “’12("22 — )\12)
- 2siny
ST )
K4 _ )‘2(“’12 + )\12) cos Y

W, 2(;\22 Y 2)

Typical trajectories are drawn for y = 0°, 45°, 90°,
135°, 180°, 225°, 270°, and 315° in figure 2.

3This corresponds to approximately 217.422 days.



5.3 Trajectories for Which C= 0

The third possible value for Cis zero. Under these
conditions, the Jacobi integral becomes

24+

2 - .2, 2 2.2
(7 o wlxo+w

2 %Yo

The trajectories to be used as models will be those
that start on the ellipse

2.2 2,2 - .2
w1x0+w2yo «a

with the proper initial velocity dictated by the equa-
tion

These conditions may be parameterized by x, =
(a/wy) cos B, y, = (a/wy) sin B, X, = a cos v, and y,
= a sin y. The values of K; are

oz[(wlz + )\22) cosf + 2w1 sin 7]

K =
1 2 2
“’1(7‘2 - )
X oA 2)\22 sinf§ — (wlz + >\22) W, COS Y
2 w; 2w A2 — A2
1 2 2 1
X - a[(wlz + >\12) cosf + 2w1 sin 7]
377 2 2
""1(>‘2 -N )
K - a)\2 (wlz + )\12) W, COSY — 2)\125inﬁ
4=

2 2 2
W)W, NN

Typical trajectories are shown in figure 3 for B,y =
0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°. With
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« = 1, most of the trajectories lay within the bounds
of the size of the paper available (figs. 3(a) to 3(h)).
For those trajectories that exceeded these bounds,
the drawings were rescaled by choosing a = 0.5;
these trajectories are given in green (figs. 3(i) to

3(n)).

6.0 ENVELOPES

For the trajectories drawn, there is an exterior
bounding curve for each. In section 6.1, a geometric
description is given that enables determination of
this bounding curve. The equation for the bounding
curve, found as an envelope, is given in section 6.2.
In section 6.3, orbits of spaceship observatories are
described. An approximation to the bounding curve
had been known; in section 6.4, this approximation
is compared to the envelope determined in section
6.2. From the analysis given in section 6.2, an inner
region from which the trajectory may be excluded
can be determined; this is done in section 6.5. It was
observed that, for all the trajectories drawn, J, = J;.
The question thus arises: Is this always true or are
there initial conditions for which J; > J/? This is
answered affirmatively in section 6.6 and trajectories
for a select set of initial conditions are drawn.

6.1 A Geometric Description

Consider a ray emanating from the libration point
and the intersections of the trajectory with it. If the
ray is referenced by an angle 0, let r(8) be the least
upper bound of all the intersections. Then, r = r(6) is
the bounding curve for the trajectory.

On a fixed ray r, the distances from the libration
point x = y = 0 to successive intersections with the
trajectory seem randomly generated. To proceed
directly from this sequence of distances to their least
upper bound seems hopeless; an alternate descrip-
tion is needed.

Consider a particle P moving according to equa-
tions (4a) and (4b) where the Kj;are given by equa-
tions (5a) to (5d) for the initial conditions (x,,y,),
(% Yo)- At t = 0, when Pis launched, a spaceship S;
is also launched. In describing the motion of §,
whose equations of motion will also be equations
(4a) and (4b), K}, K7, K3, and Kj shall be used to
denote the coefficients. The initial conditions for .S;
will be represented by (x5, y5), (x;*,y;‘,). The space-



ship §) is launched so that

5 = _(‘*’12 +2°)x;
0 )

and

2 2 o
y* _(wl + )\1 )xo

- 2
0,

o

i.e., the initial condmons for spaceship §; are chosen
so as to make K3 = K; = 0.

Under these conditions, the trajectory of the
spaceship S| is given by

X _ ok * .
= K1 cos)\lt + K2 sin )\lt

* = My (K3 cos At — K7 sin 1)

where Kl = X, *and K2 = x,,/)\l If x; and X, are
chosen as x, = K; and %, = A\ K, then K=K
and K2 = K,. Thus, for approprlately chosen initial
conditions, the trajectory of spaceship §; is the
ellipse E;

x* = K, cos?\lt + K, sin )\lt
= J, cos (7\11 - ¢1)
y* = My(Kycos At — Ky sinyr)

= M,J, sin (7\11‘ — ¢>1)

As viewed by an observer on S;, the particle P de-
scribes the ellipse E;

X = K3 cos )\2t + K4 sm)\zt

=J, cos(?\zt — <1>2)

=

= MZ(K4 cos Ayt — Ky sin ?\zt)

= M,J, sin ()\zt - q>2)

The semi-major and semi-minor axes for Ej are J;
and M, J,, respectively; for Ej, they are J, and M,J,,
respectively. An observer fixed in the (x,y) system
and looking at S; and P can visualize the ellipse E;
being attached to S; and moving with it. The center
of E; is at S; and the axes are parallel to the axes of
E,,as shown in the following sketch.

The ellipse £ rides on the ellipse £

Again, consider the particle Pmoving according to
equations (4a) and (4b) where the K; are given by
equations (5a) to (5d) for initial conditions (x,,,),
(XY0)- At t = 0, when Pis launched, a second space-
ship S, is also launched. In describing the motion of
S,, whose equations of motion shall also be equations
(4a) and (4b), K** K** K** and K** shall be used
to denote the coefﬁcxents The mmal conditions for
S, will be represented by (x5*, ¥5*), (53*, ¥5*). The

11



spaceship S, is launched so that

2 2 * %k
_ (wl t )\2 )xo
Yo = - 5

and

2 2\ k%
(wl + }\2 )xo

2

kK _

i.e., the initial conditions for spaceship S, are chosen
so as to make K}* = K3* = 0. The trajectory for
spaceship S, is given by the equations

¥¥ * % k¥ .
x = K3 coshzt + K4 sm)\zt

*%k _

Mz(KI* cos Nt — K3* sin ?\zt)

where K’“‘ = x3* and K3* = x3*/\,. If xg* and X,
are chosen as x** K; and Xt = 7\2K4, then K3*'=
Ky and K" = K,. Thus, for appropriately chosen
initial condmons the trajectory of spaceship S, is the
ellipse E,

x** = K cos Ayt + K, sin At
= J, cos ()\zt — ¢2)
* = MZ(K4 cos Nyt —

K, sin )\21‘)

= MyJ, sin (At — ¢,)

and, when viewed by an observer on §,, the particle
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Pdescribes the ellipse E,

x= K, cos 7\11‘ + K, sin )\lt
= J cos (7\1t - ¢1)
y = MI(K2 coshyt — Ky sind;t)

= MyJysin (A — ¢))

The semi-major and semi-minor axes for E, are J,
and M,J,, respectively; for Ej, they are J; and M, Jj,
respectively. The geometry for this situation is il-
lustrated in the following sketch.

The ellipse E, tides on the ellipse £,

Yy

A

In the subsequent discussions, the description will
be based on the image of the ellipse with the smaller
semi-major axis riding on that spaceship whose tra-
jectory has the larger semi-major axis. In effect, A
and J, are being compared, since M; =~ 0.49 ... and
M,=0.19...for u = 1/82.45.



6.2 The Equation of the Envelope

When a fixed ray emanating from the origin inter-
sects the smaller ellipse as it is being carried pig-
gyback on the larger ellipse, the farthest point of in-
tersection is an upper bound for all intersections of
that ray and the trajectory. This farthest point of in-
tersection can be found quantitatively.

Assume that J; > J,. The equation of the ellipse
which the spaceship S| traverses is x = J; cos « and
y = MJ; sin a, where «, the eccentric angle, is con-
sidered a parameter.# The equation of the smaller
ellipse on whose perimeter the particle rides is

(x — Jj cos a)z N (y — MJ sin a)z

=1 (17
2 272
Jy M,J,

If the envelope of this one-parameter family of
ellipses is determined, a bound for the trajectory will
be found. To find the envelope, first differentiate
equation (17) with respect to «. This produces

M,
272
M,

N
2
J2

(x - cosa) sina — (y - MJ, sina) cosa = 0

which can be simplified to

M
(x - Ji cosa)sina ——li(y - MJ, sina) cosa = 0
M

(18)

It remains to solve equations (17) and (18) for x and
y. Solve equation (18) for (x — J; cos a) and
substitute this into equation (17). The resulting equa-
tion can be solved for y;, there are two solutions:

2 .
M2 J2 sin o

(19a)

y# = MIJ1 sina *
\/Mlzcosza + Mzzsinza

“Note thata = X\ 1 — ¢,.

When these two values of y are substituted into equa-
tion (18), two values of x are determined.

MlJ2 cos @

\/Mlzcosza + Mzzsinza

(19b)

x* =J1 coso %

It is important to remember that the plus signs go
together as do the minus signs. Equations (19a) and
(19b) are the parametric equations for the envelope.
Using the plus signs, the bounding curve is drawn in
blue in figures 1 to 3.

The analysis for J, 2 J| parallels that given above
and leads to the equations’

“ M2J1 cos @

X

= 12 cosa * —
\[M2 cos“a + Mlzsinza

M1 2J1 sin &

y# = M2J2 sina *
\/Mzzcosza + Mlzsinzoz

6.3 The Orbit of the Spaceship

Each spaceship, because of the special way the ini-
tial conditions were chosen (i.e., for S|, J, = 0; for
S5, J; = 0), has a periodic orbit, an ellipse. These
elliptic orbits are described in reference 2 (pp.
258-261).

6.4 An Approximation to the Envelope

An approximation to the envelope developed in
section 6.2 can be obtained by arbitrarily assuming
the envelope to be an ellipse with semi-major axis
Jy + J, and semi-minor axis M;J; + M,J, (ref. 2, p.
283). A comparison of this approximate bound and
the bound found in section 6.2 is shown in figure 4.
The bounding curve is drawn in blue and the ellipse
in red. At the scale in which the figures are drawn,
the approximation is remarkable.

SNote that, in this case, @ = A\, — ¢,.

13



6.5 An Inner Bounding Curve

In section 6.2, an outer bounding curve was ob-
tained when the plus sign was used in equations
(192) and (19b). From the geometry of a family of
ellipses whose centers lie on a fixed ellipse, one
suspects that, under the right conditions, there may
be an inner region from which the trajectory is ex-
cluded. The existence of such an inner region de-
pends on the relative magnitude of J; and J, and the
relative magnitude of M, J; and M, J,.

The case of C = 0 is disposed of easily. From
equation (16), it is found that

2 2 2
12 )\2 —sz?_ 2

1 2a7 2 2/°2
szl —)\1

and for u = 1/82.45,

Jy =0.3515131989732791 J,

and

(Ml.fl) = 0.8878271396217024(M2J2)

In this case (refer to the sketch on page 12), there
is always an inner region from which the trajectory is
excluded. Equations (19a) and (19b), when the
minus sign is used, produce a curve that looks like
the one shown in the following sketch.

y
A
C 03 02 D
Q—>x
4

For the parameter a (a going from 0 to 2w),
the sequence to be followed in tracing the curve is
QA0,0,0;BC0;0,0,DQ. However, the two trian-
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gular regions, AO;D and BO;C, are not part of the ex-
cluded region; the excluded region is bounded by
0,0,0504. A typical situation is shown in figure 5.
In figure 6, the family of smaller ellipses is drawn in
black, the trajectory in green, and the bounding
curves in red.

For C = +1, there may be no inner excluded
region, as can be seen in figure 7. The inner envelope
in this illustration, drawn in green, does not encom-
pass a region from which the trajectory is excluded.
In the next section, initial conditions are given for
which there does exist an inner region from which
the trajectory is excluded.

For C = —1, there will always be an inner ex-
cluded region that includes the Jacobi ellipse.

6.6 On the Relative Magnitude of J; and J,

Equation (16) can be rewritten as

7.2 = ((‘)ZZMZ2 B )\22)1 2 C
1 (7‘12 - “’22M12> ? (?‘12 - “)22M12)

For u = 1/82.45,
.112 = (01235615290524281)]22 + (5.182189180103332)C

For all the figures drawn thus far, J; £ J,; are there
initial conditions for which J; > 4?If C=0,

Jy = (0.3515131989732791)J,

and clearly J; < J;. Similarly, if C= —1,

J; < (0.3515131989732791)J2

Thus, if any trajectories are to be found for which
Jy > J,, they can only be among those for which
C = +1.

It is not intended to exhibit samples of all trajecto-
ries for which J; > J,, only some of a special set. If J;



> Jz, then le > -122 and Klz + K22 > K32 + K42.
Using the parametric representation of equation (22)
in the appendix,

(w12 + Azz)cosha sinh 8 + 2w, cosh a cosh 8 sin y

K =
t 2 2
‘*’1(}‘2 - N )
K. - )\1 2>\2251nha - wz(wlz + Azz)coshacoshﬁcosy
2 2
@ "’2()‘22 - >‘12)
K = (wlz + Alz)coshasinhﬁ + 2w, cosh a cosh sin y
37T 2 2
‘*’1(7‘2 - N )
. - A, wz(w12 + 7\12)coshacosh{3c057 — 2}\125inha
477 2 2
@y “’2()‘2 -N )

Special values are chosen fora and y; « =0,y =
90°. For these values,

X - (wlz + ?xzz)sinhﬂ + 2w, cosh B

' w (A7 - )
K,=0
K, = - (wlz + Alz)si;lhﬁ + 22w1 cosh
“’1()‘2 - N )
K, =0

Thus, J; > J, implies that| K, | >|K;].

Case ]
[(wlz + )\zz)sinhﬁ + 20, coshﬁ] >

—[(wl2 + 0 2)sinh § + 20, coshﬁ]

This implies that

4w1
tanh § > —

2 2 2
2w1 + )\1 + )\2

or that B8 > —0.7343384813667741.

Case 2
[(wlz + kzz)sinhB + 2w, cosh ﬁ] >

[(w12 + )\lz)sinhﬁ + 2w, cosh B]
This implies that

(0,2 = A, 2)sinhp > 0

or, since (A, — A;2) < 0, that sinh 8 < 0. However,
sinh 8 < 0 for 8 < 0. Therefore, we find that J; > J,
fora = 0, —0.73 < B < 0,y = 90°. Trajectories for
B = —0.1 through —0.7 are given in figure 8. The
shape of the interior excluded region in figure 8, as
shown in the following sketch, is similar to that of
the sketch shown in section 6.5 rotated 90°.
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7.0 CONCLUDING REMARKS

The derivation of the finite equations of motion
from the differential equations that describe the mo-
tion of a point particle in the neighborhood of a
triangular libration point (L4 or Ls) in the linearized,
restricted problem of three bodies is well known.
From these equations, three integral invariants of the
motion were derived; the Jacobi integral is expressed
linearly in terms of two of these.

The trajectories for varied initial conditions were
drawn. The motion of a point particle as it traversed
its trajectory was described in elementary geometric
terms.

Each trajectory has an exterior boundary curve;
its equation was found. An approximation to this
boundary curve had been known; it is a well-defined
ellipse. For different initial conditions, the boundary

16

curve and the ellipse were compared graphically; the
agreement seems remarkable. For certain initial con-
ditions, there is an interior region from which the
trajectory is excluded; the equation of the boundary
of this region was found.

Lyndon B. Johnson Space Center
National Aeronautics and Space Administration
Houston, Texas, September 28, 1979
953-36-00-00-72
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Appendix
Parameterizations for the Jacobi Ellipse

A convenient method for choosing the initial
values of the position and velocity of the particle can
be obtained from the Jacobi integral:

. 2 © 2 2.2 2., 2 _
Xo“t ¥, 0 - w Xt - W,y t = C (20)

If C = —1, equation (20) can be parameterized by

1
x, = Ulcoshacoshﬁcosy (21a)
_ 1 .
Y, ——w—zcoshacoshﬁsm'y (21b)
x, = coshasinh g (21¢)
Y, = sinha (21d)

For the rest trajectories (sec. 5.1),a = 8 = 0, y ar-
bitrary. If the initial velocity is not zero, @ and 8 can
be determined from equations (21¢) and (21d) and y
from equations (21a) and (21b).

If C = +1, equation (20) can be parameterized by

1 .
x, = ?1- cosh a sinh 8 (22a)
= L ginn 22b
Yo o, sinh « (22b)
x, = cosha cosh § cos y (22¢)
», = cosha cosh §siny (22d)

For trajectories that start at the libration point (x, =
Yo=10),a = B =0, y arbitrary. If the initial position
is different from the origin, « and 8 can be deter-
mined from equations (22a) and (22b) and y from
equations (22¢) and (22d).

If C = 0, equation (20) can be parameterized by

_ 1
x, = Ul-cx cosf8 (23a)
v = Lasing (23b)
o wz
)EO = @cosy (23¢)
j)o = acos Y (23d)

Included among these trajectories is the solution cor-
responding to « = 0; i.e., the particle is at the libra-
tion point with zero initial velocity and remains there
indefinitely. Leaving this solution aside, the
parameterization is as_given above.
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1 X, = 6.062834463
%o =0

K1 = —0.8547469351

Ks = 6.917581398

Ji = 0.8547469351

@a=0,p=0ry=0.

FIGURE 1.—Typical trajectories for which C = —1.

+

Yo=0
Yo=0
Kz=0
Ke=0
J2 =6.917581398



61

L X, = 5.856248389 y, = 0.1501114254
%o =0 Vo=0
Ki= —0.8256221396 K. = —1.136727243
Ks = 6.681870528 Ks = 3.642388070
J1 = 1.404920191 J2 = 7.610150104

b)a=0,8=01vy=15.

FIGURE 1.—Continued.
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-+

©a=0,p=07y=230.

FIGURE 1.—Continued.

X, = 5.250568664
=0

Ky = —0.7402325596
Ka = 5.990801224
Ji=2.317392783

-+

Yo = 0.2899930053
Yo=0

Kz = —2.195988403
Ks = 7.036553412
J2 = 9.241362628

-~
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e

da=0,8=0y =45

FIGURE 1.—Continued.

Xo = 4.287071362
%o =0

K1 = —0.6043973540
Ka = 4.891468716

Ji = 3163862559

Yo =0.4101120411
Yo=0

K2 = —3.105596582
K+ =9.951189268
J2 = 11.08840088



44

@a=0p8=0vy=60.

FIGURE 1.—Continued.

X, = 3.031417232
Xy =0

(]

Ky = —0.4273734676
Ks = 3.458790699
J1 = 3.827498306

Yo, = 0.5022826190
Yo=0

K2 = —3.803563487
Ks=12.18766802
J2 =12.66895753

&



€T

Ba=0,8=07y=75.

FIGURE 1.—Continued.

X, = 1.569177026
%o =0
Ki = —0.2212247855

Ks =1.790401812
J1 = 4.248088022

Yo = 0.5602234665
yo =0

K2 = —4.242323825
Ks=13.59357734
J2 =18.71097675
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®a=10p=071y=090

FIGURE 1.—Continued.

Xo
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FIGURE 1.—Continued.

Xo = —5.250568664
%o =0

K1 = 0.7402325596
Ks = —5.990801224
Ji = 2.317392783

Yo = —0.2899930053
Yo=0

K2 = 2.195988403
Ks= —7.036553412
J2 = 9.241362628



133

T

-+

@) a=0,8=0y=225.

FIGURE 1.—Continued.

Xo = —4.287071362
%, =0

K+ = 0.6043973540
Ka = —4.891468716
Ji = 3.163862559

-+

Yo = —0.4101120411
Kz = 3.105596582
Ks = —9.951189268
J2 =11.08840088



143

4 X, = —3.031417232
%o =0

K1 = 0.4273734676
Ks = —3.458790699
J1 = 3.827498306

(Q)a=0,ﬁ=0,7=240°°

FIGURE 1.—Continued.

Yo = —0.5022826190
¥o=0

K2 = 3.803563487
Ks= —12.18766802
J2 =12.66895753

4



33

Ma=0,p8=0ry=25".

FIGURE 1.—Continued.
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FIGURE 2.—Continued.
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FIGURE 2.—Continued.
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FIGURE 2.—Continued.
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FIGURE 3.—Continued.
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K1 = 0.8547469351
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FIGURE 3.—Continued.
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FIGURE 3.—Continued.
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FIGURE 3.—Continued.
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FIGURE 3.—Continued.
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FIGURE 3.—Continued.
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FIGURE 3.—Continued.
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FIGURE 3.—Continued.

-+

Kz = 3.497974374
Ks = —8.834935904
J2 =10.25070816

4



£9

Ki= —1.115018463
Ks = —3.172052899
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FIGURE 3.—Continued.
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FIGURE 3.—Continued.
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FIGURE 3.—Continued.
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FIGURE 3.—Continued.
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Ka = —2.459847548
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FIGURE 3.—Continued.
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FIGURE 3.—Continued.
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FIGURE 3.—Continued.
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